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Abstract.
Background: Noninvasive identification of amyloid-� (A�) is important for better clinical management of mild cognitive
impairment (MCI) patients.
Objective: To investigate whether radiomics features in the hippocampus in MCI improve the prediction of cerebrospinal
fluid (CSF) A�42 status when integrated with clinical profiles.
Methods: A total of 407 MCI subjects from the Alzheimer’s Disease Neuroimaging Initiative were allocated to training
(n = 324) and test (n = 83) sets. Radiomics features (n = 214) from the bilateral hippocampus were extracted from magnetic
resonance imaging (MRI). A cut-off of <192 pg/mL was applied to define CSF A�42 status. After feature selection, random
forest with subsampling methods were utilized to develop three models with which to predict CSF A�42: 1) a radiomics
model; 2) a clinical model based on clinical profiles; and 3) a combined model based on radiomics and clinical profiles.
The prediction performances thereof were validated in the test set. A prediction model using hippocampus volume was also
developed and validated.
Results: The best-performing radiomics model showed an area under the curve (AUC) of 0.674 in the test set. The best-
performing clinical model showed an AUC of 0.758 in the test set. The best-performing combined model showed an AUC
of 0.823 in the test set. The hippocampal volume model showed a lower performance, with an AUC of 0.543 in the test set.
Conclusion: Radiomics models from MRI can help predict CSF A�42 status in MCI patients and potentially triage the patients
for invasive and costly A� tests.

Keywords: Amyloid, artificial intelligence, machine learning, mild cognitive impairment, radiomics

1Data used in preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(http://adni.loni.usc.edu). As such, the investigators within the
ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing of
this report. A complete listing of ADNI investigators can be found
at: http://adni.loni.usc.edu/wp-content/uploads/how to apply/AD
NI Acknowledgement List.pdf

∗Correspondence to: Mina Park, MD, PhD, Clinical Assistant
Professor, Department of Radiology, Gangnam Severance Hospi-
tal, 211, Eonju-ro, Gangnam-gu, Seoul, Republic of Korea. Tel.:
+82 2 2019 3510; Fax: +82 2 2019 3290; E-mail: to.minapark@
yuhs.ac.

INTRODUCTION

Mild cognitive impairment (MCI) is often consid-
ered a prodromal stage of Alzheimer’s disease (AD);
however, patients with MCI can vary, with different
rates of progression toward AD [1]. The identification
of MCI patients at risk for dementia due to AD is of
utmost importance to predicting disease prognosis,
as well as for potential preventative and therapeutic
treatments [2]. Therefore, biomarker-based detection
of initial amyloid-� (A�) pathology is important
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for better clinical management of MCI, potentially
providing an opportunity to start disease-modifying
therapies prior to progression of AD.

A� pathology can be assessed by measurement of
A� concentrations in the cerebrospinal fluid (CSF) or
via molecular imaging techniques, such as positron
emission tomography (PET) scans using a specific
radioligand for A� [3]. However, obtaining CSF by
lumbar puncture is invasive, and PET scans are costly,
invasive due to radiation exposure, and are not always
available [4]. Therefore, finding non-invasive pre-
dictive biomarkers for A� status could reduce the
number of invasive examinations required and finan-
cial burden.

Structural neuroimaging using magnetic resonance
imaging (MRI) has been shown to be useful in
characterizing dementia and cognitive decline due
to AD pathology [5, 6]. Structural changes in AD-
vulnerable structures, such as the entorhinal cortex,
hippocampus, and temporal lobe, have been reported
to be diagnostic indicators of cognitive impairment
and even used for the prediction of amyloid pathol-
ogy [6]. Compared with CSF study and PET scan,
MRI has the advantages of being non-invasive, and its
cost is usually reimbursed in most countries. There-
fore, if MRI can predict A� pathology, it would hold
potential advantages over CSF study or PET scans.

Radiomics is an emerging field that extracts auto-
mated quantifications of radiologic phenotypes using
data characterization algorithms [7]. Because radio-
mics models use high-throughput imaging features,
they are more likely reveal hidden information that
is inaccessible with single-parameter approaches. To
the best of our knowledge, there has been no previ-
ous study of the use of radiomics to predict amyloid
pathology in patients with MCI. We hypothesized that
radiomics features of brain MRI, along with machine
learning techniques, in MCI patients would improve
the prediction of CSF A�42 status when integrated
with clinical and genetic profiles.

METHODS

Patient population

Data used in the preparation of this article were
obtained from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database (http://adni.loni.usc.
edu). The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI
has been to test whether serial MRI, PET, other

biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure the
progression of MCI and early AD. For up-to-date
information, see http://www.adni-info.org.

A total of 494 patients diagnosed with MCI who
were enrolled in the Alzheimer’s Disease Neuroimag-
ing Initiative-GO (ADNI-GO) and ADNI2 database
were included in this study. The eligible patients were
those who completed baseline visits and underwent
MRI. Of these, we excluded those who had 1) missing
demographics or neuropsychological (NP) test data
(n = 68), 2) errors in hippocampus masks or severe
artifacts on MRI (n = 18), or 3) errors in radiomics
processing (n = 1). Finally, 407 patients were enrolled
in this study. The enrolled patients were randomly
allocated to training (n = 324) and test (n = 83) sets
(Fig. 1).

Apolipoprotein E (APOE) gene polymorphism
was assessed, and patients were divided into �4
carriers (�4/�4 or �3/�4) and non-carriers accord-
ing to the presence of the APOE �4 allele. NP
test results, including the Mini-Mental State Exam-
ination (MMSE), the 11-item Alzheimer’s Disease
Assessment Scale cognitive subscale (ADAS-cog),
and Logical Memory I (LM I) immediate recall and
Logical Memory II (LM II) delayed recall, from
MCI patients were obtained [8–10]. The total num-
bers of story units recalled in LM I were labeled as
the LM I total score, and the total number of story
units recalled in LM II were labeled as the LM II
total score. The total number of cues in LM II were
labeled as the LM II cue score. CSF A�42 was mea-
sured for all patients with available CSF samples
using the ADNI Biomarker Core at the University
of Pennsylvania School of Medicine [11]. CSF A�42
was dichotomized to A�- or A�+groups using a pre-
viously defined CSF concentration threshold (CSF
A�42 <192 pg/mL) [12].

MRI acquisition

MRIs were acquired using a 3-Tesla system
as per standardized protocols compatible with the
ADNI [13]. T1-weighted images were acquired using
an axial three-dimensional spoiled gradient echo
sequence. Axial T2 fluid-attenuated inversion recov-
ery images were acquired.

Image postprocessing and radiomics feature
extraction

Automated mask extraction of the right and left
hippocampi was performed using volBrain (https://

http://adni.loni.usc.edu
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Fig. 1. Patient inclusion flowchart.

volbrain.upv.es/) [14, 15], which is a robust automatic
pipeline for brain segmentation with high accuracy
[16]. After denoising with an adaptive nonlocal mean
filter, images were affine-registered in the Montreal
Neurological Institute space using Advanced Nor-
malization Tools software [17], corrected for image
inhomogeneities using N4, and finally, intensity nor-
malized [18]. Then, the hippocampus was segmented
based on a multi-atlas framework combining non-
linear registration and patch-based label fusion [19].
Two experienced neuroradiologists (Y.W.P. and M.P,
with 8 years and 10 years of experience, respectively)
visually checked for segmentation or registration
errors by overlaying each subject’s native-space-
transformed ROI masks onto their T1-weighted
images and modified the errors in consensus.

For radiomics analysis, all images were resam-
pled to a 1-mm isovoxel across all patients. A total
of 107 radiomics features, including shape; first-
order features; and second-order features, consisting
of gray level co-occurrence matrix, gray level run-
length matrix, gray-level size zone matrix, gray
level dependence matrix, and neighboring gray tone
difference matrix (Supplementary Table 1); were
extracted from each hippocampus ROI. A total of
214 (107 features×two ROIs [right and left hip-
pocampi]) radiomics features were obtained. The
feature extraction was performed using an open-
source Python-based package (PyRadiomics, version
2.0) [20].

Intracranial volume-corrected hippocampus
volume measurement

Total intracranial volume (ICV) and bilateral hip-
pocampus volume were generated by the volBrain
pipeline, and the hippocampus volume was normal-
ized using ICV ([hippocampus volume/ICV]×100).
ICV-adjusted hippocampal volumes were used for
the construction of prediction models of A� status.
A logistic regression model was constructed in the
training set and validated in the test set.

Radiomics feature selection and machine
learning models with performance evaluation

After normalization of all imaging features by
z-score normalization, the least absolute shrinkage
and selection operator (LASSO) with 10-fold cross
validation was applied for feature selection after
splitting the training and test sets [21]. LASSO
is designed to avoid overfitting and is known to
be suitable for analyzing high-dimensional datasets,
such as radiomics features. To evaluate whether
radiomics improves prediction over models, three
types of models were trained as follows: 1) a model
based on radiomics features; 2) a clinical model
based on demographics (age, sex, and education),
APOE �4 status, and NP test results (MMSE, ADAS-
cog, LM I, and LM II); and 3) a combined model
based on radiomics features and clinical features.
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Fig. 2. Workflow of image processing, radiomics feature extraction, and machine learning. LASSO, least absolute shrinkage and selection
operator; RF, random forest.

For classification, we applied the random forest (RF)
algorithm. Hyperparameters were optimized by ran-
dom search. In addition, to overcome data imbalance,
each machine learning model was trained as follows:
1) without subsampling, 2) with synthetic minor-
ity over-sampling technique (SMOTE), and 3) with
random over-sampling examples (ROSE) [22, 23].
Thus, a total of nine combinations of RF-based pre-
diction models with different subsampling methods
were trained and validated. Performance was evalu-
ated in the training set with 10-fold cross-validation
and validated in the test set. The area under the curve
(AUC), accuracy, sensitivity, and specificity of each
model were obtained. The machine learning algo-
rithms were trained and validated using Python 3 with
Scikit-Learn library v0.21.2. The overall process is
shown in Fig. 2.

Statistical analysis

For analysis of baseline characteristics and neu-
ropsychological test scores, either Student’s t-test or
Mann Whitney’s U test was used for continuous vari-
ables according to normality. Chi-square test was
performed for categorical variables. Logistic regres-
sion using ICV-adjusted hippocampal volumes was
applied to construct a prediction model for A� status
to evaluate the predictive performance of hippocam-
pus volume. All statistical analyses were performed
using the statistical software R (version 3.6.0; R

Foundation for Statistical Computing). Statistical sig-
nificance was set at p < 0.05.

RESULTS

Patient characteristics

The baseline characteristics and NP test results
for the 407 MCI patients in the training and test
sets are summarized in Table 1. In both the training
and test sets, the CSF A�42 +group was significantly
older (p = 0.001 and p = 0.003 in the training and test
sets, respectively), had a higher prevalence of APOE
�4 carriers (p < 0.001 and p < 0.001 in the training
and test sets, respectively), showed higher scores in
ADAS-cog (p < 0.001 and p = 0.014 in the training
and test sets, respectively), and had lower LM I total
(p < 0.001 and p = 0.008 in the training and test sets,
respectively) and LM II total scores (p < 0.001 and
p = 0.014 in the training and test sets, respectively)
compared to the CSF A�42 – group.

There were no differences in the clinical charac-
teristics and NP test results between the training and
test sets.

ICV-adjusted hippocampus volume model
performance

The ICV-adjusted hippocampus volume model
showed an AUC of 0.595 in the training set to predict
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Table 1
Clinical characteristics in the training and test sets

Training set (n = 324) Test set (n = 83) p†

CSF A�42 – CSF A�42 + p∗ CSF A�42 – CSF A�42 + p∗
(n = 123) (n = 201) (n = 31) (n = 52)

Age (mean ± SD) 69.8 ± 7.9 72.5 ± 7.0 0.001 68.5 ± 5.6 72.4 ± 7.3 0.003 0.578
Female (%) 68 (55.3) 81 (40.3) 0.009 13 (41.9) 26 (50.0) 0.476 0.870
Education (y) 16.0 ± 2.6 16.2 ± 2.7 0.319 16.5 ± 2.4 16.2 ± 2.7 0.668 0.667
APOE �4 carrier 30 (24.4) 121 (60.2) <0.001 7 (22.6) 36 (69.2) <0.001 0.397
MMSE 28.5 ± 1.5 27.7 ± 1.9 <0.001 28.8 ± 1.2 28.3 ± 1.6 0.182 0.052
ADAS-cog 7.7 ± 3.8 10.4 ± 4.7 <0.001 7.1 ± 3.6 9.5 ± 4.4 0.014 0.178
LM I total score 10.2 ± 3.3 8.8 ± 3.5 <0.001 11.1 ± 2.9 9.3 ± 2.9 0.008 0.178
LM II total score 7.9 ± 2.7 6.4 ± 3.4 <0.001 8.6 ± 2.6 6.7 ± 3.2 0.014 0.393
LM II cue score 0.0 ± 0.2 0.2 ± 0.4 0.001 0.1 ± 0.3 0.2 ± 0.4 0.179 0.244

Data are presented as the number of patients (%) or mean ± SD. ∗p-values were calculated using Student’s t-test for continuous variables and
chi-square test for categorical variables, to compare subject characteristics between the CSF A�42 – and CSF A�42 +groups in the training and
test sets, respectively. †p-values were calculated using Student’s t-test for continuous variables and chi-square test for categorical variables,
to compare subject characteristics between the training and test set. A�, amyloid-�; ADAS, Alzheimer’s Disease Assessment Scale; APOE,
apolipoprotein E; CSF, cerebrospinal fluid; LM, logical memory; MMSE, Mini-Mental State Exam.

CSF A� status. In the test set, the hippocampus vol-
ume model showed an AUC, accuracy, sensitivity,
and specificity of 0.543 (95% confidence interval
[CI]: 0.433–0.653), 55.4%, 64.2%, and 40%, respec-
tively.

Radiomics features and classification
performance

In the radiomics model, 33 radiomics features (17
from the right and 16 from the left hippocampi) were
selected to predict CSF A� status in the training
set (Supplementary Table 2). The selected features
consisted of seven shape features, four first-order
features, and 22 second-order features (e.g., gray
level run-length matrix, gray-level size zone matrix,
gray level dependence matrix, and neighboring gray
tone difference matrix). The AUCs ranged from
0.594 to 0.718 in the training set. In the test set, the
radiomics model with the highest predictive power
among the various combinations of ML models was
RF with ROSE, with an AUC, accuracy, sensitivity,
and specificity of 0.674 (95% confidence interval
[CI]: 0.557–0.790), 65.1%, 82.7%, and 35.5%,
respectively.

In the clinical model, patient sex, age, education
(years), ADAS-cog, LM I total score, and APOE �4
status were included to predict CSF A� status in the
training set. The AUCs ranged from 0.723 to 0.769
in the training set. In the test set, the radiomics model
with the highest predictive power among the various
combinations of ML models was RF with ROSE, with
an AUC, accuracy, sensitivity, and specificity of 0.758

(95% CI: 0.656–0.861), 71.1%, 67.3%, and 77.4%,
respectively.

In the combined model of radiomics and clini-
cal features, 32 out of 33 radiomics features from
the radiomics model were retained, and five out of
six clinical features from the clinical model were
retained (Supplementary Table 3). The features that
dropped out from the LASSO procedure in the com-
bined model, compared to the radiomics and clinical
models, were one first-order feature (minimum) and
patient sex, respectively. The AUCs ranged from
0.732 to 0.804 in the training set. The combined mod-
els with highest predictive power in the test set was
RF with SMOTE, with an AUC, accuracy, sensitiv-
ity, and specificity of 0.823 (95% CI: 0.734–0.912),
77.1%, 84.6%, and 64.5%, respectively. The com-
bined model showed higher performance than either
the radiomics (AUC 0.674) or clinical model (AUC
0.758) in the test set. The diagnostic performances
of the three models in the test set are summarized in
Table 2.

DISCUSSION

In this study, we developed and validated a pre-
diction model based on a combination of clinical
and radiomics features that could predict A� pos-
itivity based on CSF analysis at the single-subject
level. The combined model involving both clinical
and radiomic features showed the best performance
(AUC: 0.823), followed by the clinical model (AUC:
0.758) and the radiomics model (AUC: 0.674) in the
test set, demonstrating the utility and robustness of the
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Table 2
Diagnostic performance of each machine learning model in the test set for prediction of CSF A� positivity

AUC (95% CI) Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Model 1 (radiomics)
RF without subsampling 0.633 (0.512 – 0.754) 61.5 76.9 35.5 66.7 47.8
RF with SMOTE 0.656 (0.537 – 0.775) 61.5 76.9 35.5 66.7 47.8
RF with ROSE 0.674 (0.557 – 0.790) 65.1 82.7 35.5 68.3 55.0

Model 2 (clinical)
RF without subsampling 0.777 (0.678 – 0.877) 66.3 88.6 34.5 68.8 57.9
RF with SMOTE 0.747 (0.641 – 0.853) 60.2 75.0 35.5 66.1 45.8
RF with ROSE 0.758 (0.656 – 0.861) 71.1 67.3 77.4 83.3 58.5

Model 3 (radiomics+clinical)
RF without subsampling 0.815 (0.726 – 0.904) 65.1 63.4 67.7 76.7 52.5
RF with SMOTE 0.823 (0.734 – 0.912) 77.1 84.6 64.5 80.0 71.5
RF with ROSE 0.814 (0.722 – 0.906) 72.3 71.2 74.2 82.2 60.5

AUC, area under the curve; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value; ROSE, random over-
sampling example; SMOTE, synthetic minority over-sampling technique.

combined model. These results indicate the indepen-
dent contribution of radiomics and clinical features
in identifying MCI with CSF A� pathology and the
added value of the radiomics beyond the effects of
clinical features.

Accumulation of A� pathology is one of the hall-
mark pathologic characteristics of the AD continuum
and precedes decades before the onset of cognitive
symptoms [6]. Recently, many amyloid-modifying
therapy trials in AD subjects failed to show its effec-
tiveness [24–26], and one of the presumed reasons for
failure is the enrollment of subjects with clinical het-
erogeneity who did not have increased cerebral A�
plaques and were unlikely to have had AD pathology
[27]. Therefore, the identification of A� biomarkers
via CSF A� or PET is important to diagnosing the
AD continuum in both research and clinical settings.
However, these biomarkers are not routinely acquired
in clinics, owing to limited resources, high costs, and
the need for invasive procedures. Therefore, practi-
cal methods to determine candidates for the amyloid
biomarker test with commonly available clinical and
MRI data may be helpful.

In this context, many previous studies have at-
tempted to develop and propose different predictive
models for identifying A� positivity with various
predictors, such as demographic features, APOE
�4 status, results of NP tests, and/or MRI features
[28–33]. An early study using NP test results showed
good performance with an AUC around 0.77–0.86
[32], although a small number of patients with-
out validation limits its value. Other studies using
comprehensive parameters have been shown to be
associated with A� status, although most were per-
formed without proper validation, which may have
led to over-fitted results [34]. A recent study applying

a data-driven algorithm with clinical features showed
an AUC of 0.71 on its validation [33], showing
only fair performance, unlike the high predictive per-
formance noted in previous studies. Furthermore,
several studies have applied data that are not easily
accessible, such as blood-based biomarkers, which
have limited availability for wide clinical appli-
cation [35–37]. Meanwhile, our model integrating
radiomics and clinical features showed good perfor-
mance in both the training set and the test set, showing
its robustness. The robust predictive capacity of the
combined predictive model in early AD continuum
patients can help triage the subjects for more invasive
and costly A� testing.

Although previous radiomics studies in the neuro-
radiology field have mostly focused on neuro-
oncology [38–40], there have also been several recent
studies using radiomics analysis on T1-weighted
images in AD. These studies using radiomic feature
have shown promising results and have indicated that
radiomic features are helpful not only in the diagnosis
of AD but also in the prediction of disease progres-
sion [41–43]. In our study, various shape features,
such as maximum 2D or 3D diameter from the right
and left hippocampi, which reflect volume informa-
tion, were included in the radiomics based model,
which is in line with previous studies on decreased
volume of the hippocampus in MCI patients with
amyloid pathology [29–31]. However, though MCI
patients with amyloid pathology have lower volumes
in various brain regions, including the hippocampus,
many predictive models using hippocampal volume
offer only a fair degree of diagnostic performance
[30, 31]. In line with those results, we also found that
ICV-corrected hippocampal volume showed an AUC
of 0.543 in predicting amyloid pathology, suggesting
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that hippocampal volume alone may not be a reliable
predictor.

Interestingly, the majority of selected radiomics
features retained in our predictive model were sec-
ond order features (21 out of 32 selected features)
in the combined model, apart from shape and first
order features. The hypothesis for this observation is
that second order features capture the spatial variation
in signal intensity, which tend to extract informa-
tion that may be incomprehensible and invisible to
the naked eye. Moreover, second order features may
reflect signal intensity variation from the deposition
of A� plaques and extract different biologic informa-
tion from volume, which is the traditional imaging
biomarker of AD. Previous studies have shown that
A� plaques in AD can be reflected in MRI signal
intensity [43, 44]. As T1 relaxation time is known
to be related to many factors, such as macromolecu-
lar integrity, the relationship between free and bound
water, and the neuronal loss potentially associated
with A� plaques, and these changes may also be cap-
tured by radiomics analysis [41]. This was further
evidenced by a recent study that showed radiomics
features to be reflective of underlying histology [45].
However, a further follow-up study with histopatho-
logic correlation is mandatory to prove our hypothesis
of a direct relationship between radiomic features and
deposition of A� plaques in the brain.

Notably, nearly all the radiomics features were
retained in the combined model after the LASSO pro-
cedure in our study. This suggests that most radiomics
features harbor information independent from clin-
ical features, which may provide added value in
predicting CSF A� status. However, the prediction of
CSF A� status by radiomics features alone was not
optimal, confirming the importance of clinical fea-
tures. Nonetheless, our results indicate that the added
value of radiomics features to clinical features.

Our study has several limitations. First, we only
included the radiomics features of the hippocampus,
as previous studies have shown good performance
using the hippocampus mask for the classification and
prediction of AD [5, 43]. However, volume changes
not only occur in the hippocampus, but also in other
AD signature regions, such as the entorhinal cortex
and precuneus [6]. Thus, the radiomics prediction
model could be improved by adding radiomic infor-
mation on other anatomical structures. Further, whole
brain investigation should be performed in future
studies. Second, CSF A� status was used as the gold
standard for A� positivity rather than PET imaging. It
could be argued that the performance of the prediction

model could be sensitive to the selection of the gold-
standard method. However, the agreement between
CSF and PET determinations of A� positivity is very
high, particularly in the intermediate ranges where
thresholds for positivity typically lie [46, 47].

In conclusion, an MRI radiomics-based model can
help predict CSF A�42 status in MCI patients and
can potentially triage these patients for invasive and
costly A� tests.
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